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Figure 1: ULTRAPOSER enables ubiquitous full-body pose estimation by integrating ultrasound sensing and IMU using commodity
wearable devices. In addition to measuring IMU data, a smartphone and smartwatch are used to transmit and receive ultrasound
signals. The extracted ultrasound features capture motions from joints without any attached devices and offer drift-free range
measurements to complement IMU data for more accurate pose estimation.

Abstract

Full-body motion capture using IMUs embedded in consumer wear-
ables has the potential to enable convenient, on-the-go tracking
with minimal instrumentation. However, the sparse placement of
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these devices on the body frame presents challenges such as limited
body coverage, reduced motion feature diversity, and cumulative
drift errors. This paper introduces ULTRAPOSER, a multi-modal full-
body motion capture system that integrates ultrasonic sensing with
inertial measurements for improved fidelity, broader coverage and
increased reliability. ULTRAPOSER leverages built-in microphones
and speakers on commodity wearables, such as smartphones and
smartwatches, to transmit and receive inaudible ultrasound signals,
expanding the range of sensed body areas and providing drift-free
acoustic multipath profiles. To implement ULTRAPOSER, we sys-
tematically explore ultrasound signal designs to maximize feature
quality and propose a graph-based physics-aware fusion architec-
ture to integrate heterogeneous sensing modalities. We evaluate our
approach using the ULTRAPOSER Dataset, collected from 10 partici-
pants across diverse device placements and activity contexts. Com-
pared to state-of-the-art IMU-only methods, ULTRAPOSER achieves


https://creativecommons.org/licenses/by-nc/4.0/legalcode
https://creativecommons.org/licenses/by-nc/4.0/legalcode
https://creativecommons.org/licenses/by-nc/4.0/legalcode
https://doi.org/10.1145/3746059.3747714

UIST °25, September 28 — October 1, 2025, Busan, Republic of Korea

a 28.46% improvement in overall pose estimation accuracy and up to
67.28% error reduction for specific limbs without directly attached
Sensors.

CCS Concepts

« Human-centered computing — Ubiquitous and mobile com-
puting.
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1 Introduction

Imagine a future where a user can deal with physical injuries in the
comfort of their home while the doctor is able to remotely monitor
their rehabilitation plan and progress accurately. The ability to
capture human pose ubiquitously can enable a wide spectrum of
applications, from life logging [15] and rehabilitation [6, 22] to
adaptive interfaces [1]. Today, these applications mostly employ
vision-based pose estimation systems that are sensitive to lighting
conditions [24, 38] and sometimes rely on active markers [32]. More
importantly, these pose estimation systems only operate in line-of-
sight conditions. Thus, wearable sensor-based alternatives [30, 31]
were developed to mitigate these issues where the human pose
is measured in-situ by a large number of inertial measurement
unit (IMU) sensors — as many as 17. While these systems make
the tracking process feasible by overcoming the visual sensing
challenges, they typically make the pose tracking process quite
unwieldy for the user. Thus, there is a growing need for developing
solutions that can ubiquitously and accurately track human full-
body pose using sparse off-the-shelf commodity devices.

Recent work has made significant strides in this direction. IMU-
Poser [29] estimates full-body pose using IMUs embedded in ev-
eryday consumer devices such as smartphones, smartwatches, and
earbuds. This setup not only reduces the number of sensors a user
must wear but also leverages devices they already carry or wear
regularly. However, this location-sparse sensor configuration signif-
icantly limits body coverage and constrains the diversity of motion
features. To mitigate this, MobilePoser [45] introduces a physics-
based optimization step to enforce plausible human kinematics.
While this improves accuracy to a certain degree, the system re-
mains fundamentally under-constrained due to its limited sensing
inputs. Additionally, purely IMU-based methods inherently suffer
from cumulative errors due to the nature of inertial sensing. Conse-
quently, pose estimates are prone to global drift and degradation in
accuracy since they lack direct position measurements. While prior
works [3, 7] have attempted to address this issue by combining
IMU measurements with UWB ranging, these systems are either
incompatible with commodity devices or are limited to tracking
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only specific body parts. Given these constraints, there remains a
clear gap for ubiquitous full-body pose estimation systems that can
operate using commodity devices without suffering this reduction
of scope and accuracy.

This paper presents ULTRAPOSER, a multimodal full-body pose
estimation system that integrates acoustic sensing with IMUs to
enrich feature space and capture spatial relationships between body
joints. Our key insight is that the built-in microphones and speakers
on commercial smartphones and smartwatches can be repurposed
to transmit and receive inaudible ultrasound signals to expand
the scope of the sensed body area. However, unlike prior work
on ultrasonic ranging, ULTRAPOSER dissects the complete acous-
tic multipath profile to sense additional body parts and measure
distances that enhance both accuracy and robustness in pose esti-
mation. In a nutshell, ULTRAPOSER operates as follows: We continu-
ously measure the IMU measurements at three common on-body
mobile/wearable devices — the watch, the phone, and the earbuds.
We also make the phone and watch transmit inaudible ultrasound
signals which are captured across the other devices. We extract valu-
able features from these received acoustic signals such as Doppler
velocity and range profiles . We then fuse the user’s physical prior
context (such as whether the phone was in the pocket or in hand)
with the measured data to extract the full-body pose of the user.
Given the above simplified operation profile of the system, there are
two fundamental challenges that need to be addressed to maximize
the accuracy and robustness of the system: (a) how can we design
the ultrasound sensing setup to seamlessly operate concurrently while
maximizing the sensing quality?; and (b) how can we effectively fuse
heterogeneous signals—measured from different sensors with different
placements into a coherent pose estimation framework?

Optimal Feature-Driven Ultrasound Profile Design: With the
goal of maximizing the valuable information extracted from the
inaudible acoustic signals transmitted by the watch and the phone,
we perform a large scale measurement study (Sec. 3) to evaluate
the impact of various signal designs (e.g., single-frequency vs. wide-
band) on the ability to extract acoustic features (e.g., Doppler vs.
range) across different sensing distances. This provides valuable
insights into how to optimize ultrasound configurations for differ-
ent devices, thereby maximizing the quality and diversity of the
extracted features. Our measurements, ablation analysis and design
criterion along with the final acoustic profile design are detailed in
Sec. 5.
User Context-Driven Multimodal Sensor Fusion: We leverage
the key insight that different devices and sensing modalities can
be attached to distinct body parts and are therefore responsible for
reconstructing different regions of the body. Based on this observa-
tion, we design a multi-modal fusion framework that incorporates
user context into a graph convolutional neural network (GCN).
This architecture models the human body as a graph structure and
integrates physical prior knowledge of spatial correlation between
different modalities and devices, thus enabling accurate and robust
full-body pose estimation. We provide more details in Sec. 6.

We implement ULTRAPOSER using off-the-shelf smartphones,
smartwatches, and earbuds and collect over 334,000 pose measure-
ments across 18 action classes over 10 users. This data is collected
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Table 1: Comparison of ULTRAPOSER with prior wearable-based motion capture systems

Project Modality Number of Sensors Commodity Devices Full-body Tracking Absolute Range
DIP-IMU [14] IMU 6 X X
IMUPoser [29] IMU <3 X

Ultra Inertial Poser [3] IMU+UWB 6 X

SmartPoser [7] IMU+UWB 2 b 4

PoseSonic [27] Ultrasound 2 X b 4

ULTRAPOSER IMU+Ultrasound 3

from users across diverse ages, heights, and weights in multiple dif-
ferent environments to form a comprehensive dataset for evaluation
of ULTRAPOSER. The users perform a diverse set of actions across
different device configurations (e.g., phone in hand vs. in pocket).
With the baseline of considering IMUPoser [29], our experimental
results demonstrate a 28.46% improvement in overall human pose
estimation and up to 67.28% error reduction in tracking specific
limbs.
Our contributions are summarized as follows:

e We present the first system that combines ultrasound and
IMU sensing from sparse consumer devices for full-body
pose estimation.

e We propose a graph-based, physics-aware sensor fusion
framework that leverages the spatial complementarity of
different sensing modalities and body regions.

e We conduct comprehensive evaluations and benchmarking
experiments, demonstrating the effectiveness of each system
component and design choice.!

Limitations: Despite the significant improvement provided by
ULTRAPOSER, there are several limitations that need to be addressed
in the future (more details in Sec. 8): (1) Hardware limitations
of commodity devices limit acoustic signal extraction capability.
(2) Device placement of the watch and phone is required to be
on different sides of the body for lateral coverage. (3) Operability
of ultrasound frequencies needs to be evaluated for continuous
transmission in the presence of humans and other animals.

2 Related Work

We categorize prior work on non-visual motion capture into three
main classes based on their sensing modalities and compare ULTRA-
Poserwith the most representative related work in Table. 1.

Motion Capture with Wearable IMUs: IMU-based full-body
motion capture systems are robust across various environments
and have been widely adopted in state-of-the-art commercial solu-
tions such as Xsens [30] and Noitom [31]. While highly accurate,
these systems are expensive, cumbersome, and impractical for daily
use, as they require wearing more than ten specialized IMUs in-
tegrated into a full-body suit. To improve usability, recent work
focuses on reducing the number of required IMUs. One line of
research uses specialized IMUs placed on six key joints (e.g., DIP-
IMU [14], TransPose [51]), leveraging deep learning models to infer
full-body pose. Other studies explore advanced learning models

Dataset, code and model are available at https://github.com/leeyadong/UltraPoser

that enhance accuracy [18, 50, 52], generalization [54], and effi-
ciency [44]. Another direction uses embedded IMUs in consumer
devices like smartphones, smartwatches, and earbuds [29, 45], or
VR hardware [8, 16, 36, 43, 56]. These systems are more affordable
and better suited for everyday use. However, they face a much
more under-constrained problem due to the extreme sparsity of
sensors—typically fewer than 3 IMUs. Moreover, IMUs provide
only relative measurements and suffer from drift, especially with
consumer-grade devices.

To address the challenges, ULTRAPOSER repurposes the built-in
microphones and speakers in consumer devices to perform ultra-
sound sensing. It enhances sensing coverage of human body joints
not directly monitored by IMUs, and provides additional absolute
range information, mitigating accumulation errors inherent in IMU-
only systems.

Motion Capture with Wireless Signals: Wireless sensing lever-
ages how human motion alters signal propagation to estimate
pose. Most existing systems are device-free, relying on external
transceivers (e.g., mmWave [5, 21, 46, 55] or Wi-Fi [17, 33, 47]) to
sense human movement via multipath reflections. In the acoustic
domain, Shibata et al. [34] proposed using audible chirp signals
with external speakers and microphones for acoustic feature ex-
traction and 3D pose estimation. However, these systems often
require specialized hardware, operate only in constrained spaces,
and degrade in complex environments due to multipath interfer-
ence. Recent efforts have integrated wireless sensors into head-
mounted wearable devices. For example, mmEgo [21] employs a
head-mounted mmWave radar to generate 3D point clouds for pos-
ture estimation. PoseSonic [27] embeds microphones and speakers
into smart glasses to enable acoustic-based upper-body pose track-
ing. Although these approaches improve mobility, they still rely on
custom hardware and are typically limited to partial-body tracking.
ULTRAPOSER distinguishes itself from this line of work by lever-
aging existing microphones, speakers, and IMUs on ubiquitous
commercial devices such as smartphones and smartwatches. This
design enables mobile, full-body tracking while maintaining com-
patibility with the devices users already carry in their daily lives.

Motion Capture with Multi-modal Sensors: To overcome the
limitations of single-modality systems, prior work has explored
combining IMUs with complementary modalities to improve the
accuracy and robustness of pose estimation. For example, Lee et al.
have combined head poses derived from head-mounted cameras
with IMUs worn on smartwatches to estimate full-body motion
[20]. Other strategies enhance IMU-based systems with additional
sensors, such as pressure sensors (PressInPose [10]) and magnetic
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Figure 2: Benefits of ultrasound sensing. Ultrasound signals capture joint motions of both the upper body (a) and lower body (b)
that are not directly monitored by IMUs. (c) Ultrasound provides multipath-based absolute ranges free from the IMU drift.

sensors (MI-Poser [2]). While effective, these approaches often in-
volve obtrusive setups or rely on custom hardware not available in
commodity devices. Other ultra-wideband (UWB) radios-based sys-
tems, such as Ultra Inertial Poser [3] and SmartPoser [7], measure
absolute distances between devices to mitigate IMU drift. However,
these systems rely solely on device-to-device range measurements
and do not leverage multipath propagation, which can offer ad-
ditional motion cues—particularly valuable when the number of
devices is limited.

In contrast, ULTRAPOSER moves beyond simple device-to-device
range estimation by measuring multipath range profiles and Doppler
shifts, which capture both line-of-sight and multipath propagation
characteristics. This approach provides detailed insights into abso-
lute and relative path changes induced by human motion, including
reflected signals from different body parts, thus enabling more
accurate and robust posture estimation.

3 Motivation Study — Can Ultrasound Sensing
Enhance Multi-Modal Pose Estimation?

In this section, we demonstrate how ultrasound sensing can com-
plement IMU-based motion tracking by expanding the scope of
sensing and extracting spatial features to recover human pose more
reliably. To simplify the analysis, this motivation study focuses on a
single-device scenario in which the user carries only a smartphone,
either held in hand or placed in a trouser pocket. More complex
multi-device configurations, involving smartwatches and earbuds,
will be discussed in the following sections.

Ultrasound Sensing Primer: Ultrasound sensing uses high fre-
quency acoustic signals (typically around 20 kHz when imple-
mented on consumer wearables) to perform various sensing tasks
[4, 25, 28]. A typical ultrasound sensing system consists of a speaker
that transmits sound waves and a microphone that receives the
reflected signals. By analyzing how these signals propagate and re-
flect off the human body and surrounding environment, the system
can extract rich motion and spatial information. In this paper, we
consider two complementary types of features from the received

ultrasound signal: the Doppler spectrum and the Channel Impulse
Response (CIR).

The Doppler spectrum reflects frequency shifts in the received
signal caused by motion—either from the target or the sensing
device itself. These shifts, known as the Doppler effect, are directly
related to velocity. The CIR, in contrast, characterizes how the
ultrasound signal travels through multiple propagation paths before
reaching the receiver. Given the complex baseband transmitted
probe frame t[n] of length N and the received samples r[n], the
CIR k(7] can be estimated by cross-correlation:

1 N-1 .

Bl = & Z t[n] r[n - 7], (1)
n=0

where 7 indexes the possible propagation delays and * denotes
conjugated operation. Assume the baseband sampling rate is f;, so
that one sample shift corresponds to a time increment At = ]%s For
each delay index 7 of h[7y], the round-trip propagation time is
tr = 1 At. The corresponding one-way path length is

_Clp cTg

TS

with ¢ is the speed of sound. Thus, we can obtain the ranges of
the reflecting objects from h[7], with its amplitude indicating the
strength of that reflection.

@

Enhancing Feature Diversity: Our first goal is to demonstrate
how ultrasound sensing enriches motion features and mitigates
the limitations of sparse devices. We achieve this by evaluating
two scenarios where the smartphone (and hence the IMU) is not
located on the actively moving joint: (1) the smartphone is placed in
a trouser pocket while the user performs upper body motions (i.e.,
arm push), and (2) the smartphone is held in hand during lower-
body motions (i.e., leg kick). As shown in Fig. 2a and Fig. 2b, in both
scenarios, the IMU alone cannot accurately capture motion at joints,
it is not directly attached to (the peak values of acceleration and
angular velocity are only 0.73 m/s? and 0.18 rad/s, respectively).
Next, we configure the smartphone to perform ultrasound-based
motion tracking by transmitting a 17 kHz single-tone sine wave.
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The received signal is first passed through a notch filter to re-
move the carrier frequency, and then processed using a Short-Time
Fourier Transform (STFT) to extract the Doppler spectrum, which
captures frequency shifts induced by body movement. As shown in
Fig. 2a and Fig. 2b, the ultrasound Doppler features exhibit rich dis-
tinct patterns associated with different motion speeds. This clearly
demonstrates that ultrasound acoustic response can capture
complementary information that reflects movements of body
parts beyond the IMU’s direct measurement scope.

Robustness to IMU Cumulative Drift: As we know, IMUs in-
herently suffer from drift and provide only relative measurements,
i.e., acceleration and angular velocity, at each attached joint. In
contrast, we aim to show that ultrasound sensing can provide ab-
solute ranging information by measuring the time-of-flight (ToF)
of sound reflected off different body parts. We demonstrate it by
configuring the smartphone to transmit a wide-band ultrasound
signal spanning 4 kHz (from 18 kHz to 22 kHz) and extract the CIR
to estimate the propagation distance of each reflection path (details
in Sec. 5). This setup yields a range resolution of approximately
AR = ¢/2B = 4.3 cm, where ¢ = 343 m/s is the speed of sound and
B = 4 kHz is the signal bandwidth. The smartphone is placed in the
user’s trouser pocket while the user performs upper-body motion
(i.e., arm lifting).

The CIR shown in Fig. 2c captures the absolute range variations
in path length as the user moves their arms. For comparison, we
repeat the same motion with the smartphone held in hand to collect
acceleration data from the IMU, and then apply double integration
to estimate range variation. The IMU-derived range measure-
ments exhibit significant deviation over time due to cumula-
tive error, while the ultrasound-based measurements remain
accurate and stable. This demonstrates the potential of leveraging
ultrasound sensing to provide drift-free, absolute multipath range
profiles for accurate full-body pose estimation.

4 System Overview

ULTRAPOSER achieves ubiquitous full-body pose estimation via the
following stages: First, it continuously records IMU data from all
three devices (i.e., a smartwatch, a smartphone, and a pair of wire-
less earbuds). Second, both the smartwatch and the smartphone
transmit ultrasound signals while simultaneously recording audio.
This setup enables multiple acoustic links between these smart
devices. Although ultrasound sensing is theoretically feasible on
any device equipped with both a speaker and a microphone, hard-
ware limitations (Sec. 8) restrict our current implementation to a
subset of links, including phone-to-phone, watch-to-watch, and
watch-to-phone. Next, ULTRAPOSER extracts motion-related ultra-
sound sensing features from the recorded acoustic signals, including
Doppler velocity via STFT and CIR via cross-correlation [40]. These
multi-modal features, along with the IMU data, are then fused us-
ing a machine learning-based pose estimator to generate accurate
full-body pose representations. Fig. 3 describes this pipeline.

The rest of this paper introduces our approach to solving two
fundamental challenges for maximizing the quality and robustness
of pose estimation by extracting valuable features from the avail-
able resources. (1) Designing optimal ultrasound profile: Sec. 5
describes how we systematically design ultrasound signal profiles

UIST 25, September 28 — October 1, 2025, Busan, Republic of Korea

Sec. 6
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Physics-aware
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Figure 3: ULTRAPOSER Overview.

to enhance sensing quality and extract optimal motion features.
(2) Graph-based multi-modal sensor fusion: Sec. 6 introduces
our multi-modal fusion framework, which exploits the skeletal
graph structure of the human body through graph-based modeling
while incorporating user-contextual physical knowledge to achieve
accurate pose estimation.

5 Ultrasound Profile Design

While ultrasound sensing offers significant advantages over IMUs,
as discussed in Sec. 3, fully leveraging its potential for full-body pos-
ture estimation requires meeting the following key requirements.
(1) High-SNR Doppler and CIR measurements with long sensing range:
Accurate pose estimation depends on high-SNR Doppler shifts to
capture additional motion cues, and CIR to compensate for IMU
drift. Moreover, a sensing range of at least 1 meter is needed to cover
distant limbs like feet or hands. (2) Concurrent ultrasound sensing
with multiple devices: Both the phone and watch must be capable of
simultaneously extracting ultrasound features from different body
parts without causing mutual interference.

However, achieving these goals on commodity wearables is chal-
lenging due to hardware limitations. The audio system in com-
modity smartphones and smartwatches is quite heterogeneous and
primarily optimized for audible sound playback rather than ul-
trasound sensing. As a result, usable frequency bands and output
power are limited, constraining sensing range and degrading SNR.
Thus, a carefully designed ultrasound signal profile (which device
transmits what signal) is required to match device capabilities while
maximizing sensing performance.

To overcome the above challenges and meet the system require-
ments, we conduct a series of microbenchmarks and design our
ultrasound signal profile based on two key insights: (1) Single-tone
signals provide higher-SNR Doppler measurements than wideband
signals. (2) Proper frequency division enables simultaneous ultrasound
transmission without interference or loss of resolution, as detailed
below.

5.1 How to best capture Doppler and CIR
measurements using ultrasound?

Prior ultrasound-based sensing systems typically use either single-
tone signals [9, 35] for Doppler-based velocity estimation, or wide-
band waveforms [41, 42] for extracting both Doppler and ToF-based
CIR. While wideband signals offer richer features, they suffer from
lower SNR due to energy spread across frequencies—particularly
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Figure 4: Ultrasound feature extraction insights: (a) Doppler features extracted from single-tone signals are more robust to
noise than those derived from wideband signals. (b) The smartphone’s frequency response shows significant degradation in
received signal quality at higher frequency bands. (c) Lower-frequency tones demonstrate higher SNR in capturing Doppler
profiles. (d) CIR range measurement using a subset of subcarriers achieves a similar range resolution to using all subcarriers.

degrading Doppler quality. In contrast, single-tone signals concen-
trate energy at a specific frequency, yielding stronger echoes and
higher SNR at longer ranges.

We empirically explore the trade-offs for capturing the Doppler
between signal types. We configure a smartphone (Pixel 2 XL) to
transmit either (1) a 20 kHz single-tone or (2) a wideband signal
spanning 18-22 kHz. During the experiment, the phone remains
stationary while the user performs push gestures from distances of
40, 60, 80, and 100 cm. We compute SNRs by measuring the peak
signal power relative to background noise for both Doppler (from
the single-tone) and Doppler/CIR (from the wideband signal). As
shown in Fig. 4 (a), the single-tone consistently achieves higher
Doppler SNR, especially at longer ranges. Given this insight, we
further explore the frequency at which the commodity hardware
enables the best performance. As shown in Fig. 4 (b), the smartphone
(Pixel 2 XL) exhibits significantly reduced gain above 22 kHz. The
impact of this gain is further quantified in Fig. 4 (c), where we
transmit single-tone signals at 17.5, 20, and 22.5 kHz and see a
significant SNR drop at higher frequencies. This leads us to the first
key insight — Key Insight 1: Narrowband tone can measure
Doppler more robustly than wideband tone and it can do it
better at lower frequencies.

Next, we aim to evaluate the efficacy and ability of a wideband
acoustic signal to capture the CIR of the environment. The first pa-
rameter that captures that limit is the bandwidth. As is well known
in the literature, the higher the bandwidth, the better the resolution.
We choose a 4 kHz bandwidth between 18-22 kHz that enables a 4.3
cm range resolution. This choice is made to optimize for three fac-
tors: avoid audible bands, enable maximum resolution, compatible
with commodity hardware gains. The next factor however is the co-
existence of these devices. Specifically, we expect the watch and the
phone (and perhaps even the earbuds in the future) to capture the
CIR simultaneously. This means the planned bandwidth of 4 kHz

needs to be shared across time or frequency. The first approach
could be time-division multiplexing (TDM) where each device takes
turns transmitting the wideband signal. However, given these de-
vices are separated and the length of our designed chirps will be
several ps, the lack of synchronization will lead to signal leakage
across the devices. Hence, we take a frequency division multiplex-
ing (FDM) where they each transmit across different frequencies.
However, there are two ways, the devices can share frequencies
- (1) a half-and-half approach where bandwidth is split down the
middle or (2) interspersed signals at alternate subfrequencies.

We conduct an experiment to validate this design, by configuring
the smartphone to transmit three types of signals: (1) all subcarriers
across 18-22 kHz, (2) only even subcarriers across 18-22 kHz, (3)
all subcarriers across a narrower 19-21 kHz band. During the exper-
iment, the smartphone remains stationary while a user performs
a push gesture at a distance of 50 cm. As shown in Fig. 4 (d), the
interspersed-subcarrier configuration (2) achieves range resolution
comparable to the full-bandwidth case (1), and significantly outper-
forms the narrower-bandwidth baseline (3). Furthermore, the CIR
correlation coefficient between the even subcarriers (2) and the full
18-22 kHz range (1) is 0.80, compared to 0.75 for the 19-21 kHz
band (3), demonstrating superior signal similarity achieved by the
even-odd subcarrier allocation. The only loss due to interspersed
measurements is primarily the reduction in the maximum range of
sensing the CIR which can be overcome by sending a longer dura-
tion symbol. Key Insight 2: Interspersed frequency-division
multiplexing can achieve spectrally efficient CIR estimates
with reasonable resolution for tracking pose.

5.2 Concurrent Ultrasound Sensing Profile
Design and Feature Extraction

In this section, we describe the design of our ultrasound acoustic
signals being transmitted from the two devices - the phone and the
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watch. Our primary goal is to maximize the ability to capture both
the Doppler and CIR at long ranges. Both of these measurements are
essential to ULTRAPOSER design — Doppler for enhancing motion
features and CIR for IMU drift correction.

Based on the above insights described in Sec. 5.1, we adopt a
hybrid transmission strategy that combines the benefits of both
signal types — the single frequency tone and a wideband symbol.
We choose the length of the symbol to compensate for the loss of
range due to the interspersing of the symbols across devices. We
first make the watch and the phone transmit a single tone at 17
kHz and 17.5 kHz respectively, where both devices demonstrate the
maximum transmitter-receiver gains at high frequencies. Next, both
devices emit OFDM-modulated wideband signals generated from a
Zadoff-Chu sequence with a 16 ms frame duration spanning 18-22
kHz, corresponding to a range resolution of 4.3 cm. An interleaved
subcarrier allocation scheme is used: the smartphone occupies even-
numbered subcarriers, while the smartwatch uses odd-numbered
ones. This design enables simultaneous extraction of high-SNR
Doppler and accurate CIR measurements for both devices, which
meet the requirement for full-body pose estimation.

Ultrasound Feature Extraction: The ultrasound signal is pro-
cessed through two parallel pipelines to extract Doppler and CIR
features. For Doppler processing, we first apply a notch filter to
remove the carrier frequency. Then we apply an STFT with an FFT
window length of 8192 samples and an overlap of 7680 samples at a
48 kHz sampling rate to obtain the time-varying Doppler spectrum.
The resulting Doppler amplitude spectrograms from three links
(phone-to-phone, watch-to-watch, watch-to-phone) are used as in-
put to the pose estimation model. Note that the inter-device Doppler
channel captures relative motion between different body parts, pro-
viding complementary features beyond intra-device channels to
enhance pose estimation accuracy.

For CIR processing, the received signal is cross-correlated with
the transmitted template to estimate the CIR, where each corre-
lation peak corresponds to the propagation delay and thus the
distance of individual multipath components. To extract motion-
related information, we apply first-order temporal differentiation
to the CIR over time and use the amplitude of the resulting dynamic
CIR from two links: phone-to-phone and watch-to-watch. Note that
the phone-to-phone CIR has a much better SNR and a significant
overlap in the sensed information with that of the watch-to-watch
CIR which is extremely noisy due to the watch’s limited speaker
volume. Thus, our model primarily relies on the phone-to-phone
CIR to expand the spatial scope of sensing pose behavior. We antic-
ipate that our ultrasound profile can be readily adapted to multiple
new acoustic link pairs as commodity wearable hardware improves.

6 Graph-based Multi-modal Fusion

Overview and Design Motivation. After extracting ultrasound
features, the next step is to effectively fuse multi-modal features
(IMU, Doppler, CIR) collected from different wearables (Phone,
Watch, Earbud) into a unified pose estimation framework. This
task presents two key challenges: (1) IMU captures local orienta-
tion and acceleration, whereas ultrasound provides complementary
velocity and range information. These heterogeneous signals reflect
distinct physical quantities and have different temporal and spatial
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properties. (2) Each device is located on a different body part and
has a biased spatial coverage. For instance, the phone may be more
sensitive to movement of the right-side joints when placed in the
right hand/pocket.

To address these challenges, we design a graph-based, physics-
aware pose estimation network, as illustrated in Fig. 5. Our key
insight is to leverage the inherent skeletal graph structure of the hu-
man body and integrate physics-aware priors based on the locations
and sensing coverage of each device. This design explicitly encodes
which modalities from which devices should contribute more signifi-
cantly to reconstructing specific body parts, allowing the network to
perform more targeted and accurate pose refinement.

Model Input and Output. ULTRAPOSER takes IMU data, Doppler
spectrograms, and CIR profiles as input features, denoted as (X I xD,
X©). Specifically, X! € RT*C represents IMU signals from the
smartphone, smartwatch, and earbud, where T = 30 corresponds
to a 1-second time window and C = 36 is the total number of
IMU channels. Following prior work [29, 45], each device pro-
vides 3-axis acceleration and a 3 X 3 rotation matrix, contributing
12 IMU channels per device. X2 € RT*(FXND) denotes Doppler
spectrograms extracted from three acoustic links—phone-to-phone,
watch-to-watch, and watch-to-phone—where F = 100 is the num-
ber of Doppler frequency bins and N; = 3 is the number of links.
X€ € RT*D represents CIR profiles from the phone-to-phone link,
with D = 200 range bins capturing multipath range information.
The model outputs 144 SMPL [26] pose parameters, representing
24 human body joints using 6D rotations (i.e., 6D unconstrained
vectors that are mapped to rotation matrices via Gram-Schmidt),
which offer continuous representations that are more suitable for
learning [57].
Cross-modal Feature Embedding: As shown in Fig. 5, we em-
ploy specialized encoders to effectively extract spatial and tempo-
ral features from each modality. For IMU data, we use a BiLSTM-
based IMU encoder, which is well-suited for modeling local pattern
variations within short-term temporal signals [14]. In contrast,
ultrasound data (i.e., Doppler and CIR) exhibit high-dimensional
time—frequency and time-distance structures. To capture their com-
plex contextual dependencies, we adopt two Transformer-based
encoders (i.e., Doppler encoder and CIR encoder), respectively [39].
All encoded features are compressed to a common embedding di-
mension for more effective multi-modal fusion. This results in
feature embeddings F!, FP, F€ e RT*4 for IMU, Doppler and CIR
inputs, respectively, where d = 256 is the feature dimension.
Traditional concatenation fusion solutions overlook intrinsic
inter-correlations among modalities jointly describing the same un-
derlying motion. In contrast, ULTRAPOSER adapt the cross-attention
mechanism to enable cross-modal feature fusion, allowing informa-
tion from different modalities to interact and reinforce one another
[12, 23]. Given the modality consistency and computational sim-
plicity, we first fuse the Doppler and CIR features to obtain the
ultrasound feature FU = FP @ F C) where © denotes element-wise
multiplication. Then, we develop two cross-attention modules: the
IMU Cross-Attention module uses IMU features F! as queries and
the ultrasound feature FU as keys and values to enhance F!, while
the Ultra Cross-Attention module reverses the roles, refining Fl
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Figure 5: Overview of our multimodal fusion framework, which comprises two key modules: (1) Cross-modal Feature Embedding,
which extracts and fuses features from IMU and ultrasound data with cross-attention; (2) Graph-based Physical-aware Pose
Estimator, which leverages the human skeletal graph structure to capture spatial complementarity across sensing modalities

and body regions.

with FU. The resulting enhanced features, denoted as FeU and Fg ,
are passed to the subsequent modules.

Graph-based Physics-aware Full-body Pose Estimator. Our
key insight is that the human skeleton naturally forms a graph
structure, with intrinsic connectivity between the various joints.
To leverage this prior knowledge for better fusion, we represent
the 24 body joints as nodes in a graph (see Fig. 5) and develop a
Spatial-Temporal-GCN (ST-GCN) network [48] as the backbone of
our full-body pose estimator. This approach enables structured and
semantically meaningful propagation of motion features across the
skeleton [49]. To align the enhanced features (i.e., FY and F!) from
Sec. 5 with the skeleton graph-based representation, we first de-
sign a Multi-Layer Perceptron (MLP)-based [37] multimodal global
joint decoder (Fig. 5). We begin by fusing the enhanced IMU and
ultrasound features using element-wise dot product F, = FY o FI,
where F, € RT%4 and d denotes the feature dimension. We then
apply the multimodal global joint decoder to F, into global joint
embeddings Fp € RT*24xd ¢orresponding to the 24 skeletal joints.

Another important insight is that each wearable device and its
corresponding sensing modalities have distinct advantages in sens-
ing the nearby joint movements. IMU sensors offer high-precision
readings for joints to which they are directly attached, while the ul-
trasound features are more sensitive to motion in joints located near
the device. To exploit this, we introduce a physics-aware pose opti-
mization scheme that leverages the physical relationships between
device locations, body joints, and sensing capabilities. Specifically,
we implement physics-aware modality-specific decoders tailored
to each device, as shown in Fig. 5. The IMU-attached joint decoder
maps IMU features to the joints nearest to the device location.
Doppler spectra from the phone and watch are reused but pro-
cessed independently by a device-specific Doppler encoder to ex-
tract motion-related features corresponding to nearby joints. Then,
the phone ultrasound joint decoder maps the phone-specific ultra-
sound features to the joints on the same side of the body as the
phone, while the watch ultrasound joint decoder focuses on joints

on the watch-wearing side. The output of these physics-aware joint
decoders is fused with the global joint embeddings F;, with element-
wise multiplication, aiming to guide the network with structural
priors about the spatial constraints between wearable devices and
body joints.

Next, the fused joint embedding is fed into an ST-GCN-based
pose refiner module, which captures both the spatial skeletal topol-
ogy and temporal motion dynamics to further enhance the joint
representations. This module consists of a three-layer architecture,
with each layer integrating a GCN [53], a Temporal Convolutional
Network (TCN) [13] and a ReLU activation function, as shown in
Fig. 5. By progressively reducing the feature dimension and tempo-
ral kernel size across layers, the network hierarchically abstracts
motion patterns from increasingly localized spatiotemporal con-
texts, resulting in more precise pose refinement. Additionally, we
incorporate a learnable importance weighting mechanism on the
graph edges, which allows the model to dynamically assign varying
importance to different skeletal connections—emphasizing joints
in proximity to device-equipped regions.

Finally, followed by an MLP-based motion decoder, the model
outputs final full-body joint prediction results, i.e., 6D rotations of

24 body joint points R € RT*(24x6)

Loss Function Design. The loss function of our model consists of
two main components: a joint 6D rotation estimation loss Lot for
ensuring global coherence of the skeleton, and a joint position esti-
mation loss Lpos for providing local structural constraints. Among
them, the joint 6D rotation estimation loss is computed as follows:

Lrot = IR = Rorll3 ®)

where Rgt refers to the ground truth of joint 6D rotations. To obtain
a full-body joint position estimate P, we employ a standard forward
kinematics module [26] that computes the output joint rotations
propagated through the human skeleton hierarchy to determine
the global positions of joints and mesh vertices. The joint position
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Figure 6: ULTRAPOSER system setup. ULTRAPOSER collects data
from users wearing a smartphone, smartwatch, and earbud.
The smartphone is either held in the hand or placed near the
trouser pocket during data collection.

estimation loss is as follows:
-Epos =|P- PGT”% (4)

where Pgr refers to the ground truth of joint positions. Therefore,
the final loss function can be formulated as:

L = Lot + Lpos ©)

7 Evaluation

This section describes our data collection setup and neural net-
work training settings. We then evaluate the effectiveness of UL-
TRAPOSER by comparing its performance with the SoTA IMU-only
solution, i.e., IMUPoser [29], across various modalities, joints, and
motion types. Finally, we conduct ablation studies to assess our
designed model components and the impact of each device.

7.1 Dataset Collection

Data Collection Setup: Since ULTRAPOSER is the first system that
combines IMU and ultrasound sensing using commodity devices
for full-body pose estimation, we collected our own dataset for both
training and evaluation. As shown in Fig. 6, our data collection setup
includes a smartwatch (Samsung Galaxy Watch 4) worn on the
left wrist, a smartphone (Pixel 2XL), and a pair of wireless earbuds
(ESense). While our evaluation is based on this specific combination
of devices, the underlying framework is designed to be generalizable
to other smartphones and wearable platforms. We collected data
and evaluated ULTRAPOSER in two real-world usage scenarios: (1)
“Phone in Hand”: the user holds the smartphone in their right hand,
and (2) “Phone in Pocket”: the user places the smartphone in their
right trouser pocket. Each participant performs the same set of
motion sequences once in each scenario. In the “Phone in Pocket”
setup, the smartphone’s position may shift during motion, which
can alter the IMU coordinate frame and introduce acoustic noise
due to friction. To mitigate this, we use an attachable pocket clip
to secure the phone near the user’s trouser pocket. The ESense
earbuds are used on the left side only to collect IMU data, as this
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configuration provides more stable measurements for this particular
device.

We set the IMU sampling rates to 50 Hz for both the smartphone
and the earbud, and 100 Hz for the smartwatch. We utilize all avail-
able speakers (two on the smartphone and one on the smartwatch)
and microphones (two on the smartphone and one on the smart-
watch) for acoustic transmission and recording. Among the two
recorded audio channels for the smartphone, we calculate the SNR
and select the one with higher quality for ultrasound sensing. For
the ground truth pose, we use a ZED 2i stereo camera to record RGB
images at 30 Hz. These images are processed using 4DHumans [11],
a SoTA human mesh recovery network, to generate full-body poses
in the SMPL [26] format. We then synchronize all interpolated IMU
and ultrasound data from the various devices with the ground truth
poses to ensure temporal alignment across different sensing modal-
ities. Following prior work, such as IMUPoser [29], we perform
calibration on the devices’ IMU data before data collection. We first
align all devices to a common reference frame before recording
data then ask participants to perform a template pose (i.e., T-pose)
at the beginning of each recording session. This calibration step
accounts for individual differences in body dimensions (e.g., height
and limb lengths), ensuring accurate mapping of sensor data to
full-body pose representations.

Dataset Details We recruited 10 volunteers for data collection,
with weights ranging from 52 kg to 83 kg, ages from 19 to 27 years,
and heights between 162 cm and 188 cm?. Participants were asked
to wear the devices in a manner that felt most comfortable to them.
To better reflect real-world usage, we did not control for clothing
differences or smartwatch placement preferences. Following the
motion classes defined in the DIP-IMU [14] dataset, we incorporated
the following set of motion actions:

e Upper Body: Right arm raise, left arm raise, both arms raise,
right arm push, left arm push, both arms push, right/left arm
circle.

e Lower Body: Right leg kick, left leg kick, right knee raise,
left knee raise, squats, lunges with the left/right leg.

e Full Body: Raising both arms while stepping side to side,
spreading arms while performing forward lunges, and march-
ing in place.

e Walking: Walking continuously back and forth.

Participants followed instructional videos during the motions
but were not required to replicate the motions exactly. Each motion
category — upper body, lower body, full body, and walking - lasted
approximately 240 seconds, 180 seconds, 90 seconds, and 60 seconds,
respectively. Each participant completed all motion sequences twice:
once with “Phone in Pocket” and once with “Phone in Hand”. On
average, each participant contributed approximately 20 minutes of
data, resulting in a total dataset of around 185 minutes and 334, 000
data frames.>

Neural Network Training. The pose estimation model is imple-
mented in PyTorch and trained using an NVIDIA RTX 4080 Ti Super

2While the current dataset primarily includes male subjects, we have open-sourced it
to support future research and encourage its expansion with more diverse participants
for broader generalization.

3All data collection procedures were approved by the Institutional Review Board (IRB)
of our institution.
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Table 2: Performance comparison of different input modalities under two phone placement scenarios.

and can be applied to our method without modifying our system. For
evaluation, we randomly split the dataset into training, validation,
and testing sets with a 7:1:2 ratio. When assessing generalization

“@

\

Phone in Pocket Phone in Hand
Input Modal
MPJRE (°) |  MPJPE (cm) | MPJVE (cm) MPJRE (°) |  MPJPE (cm) | MPJVE (cm)
IMU (IMUPoser [29]) 10.01 4.77 5.85 8.97 433 481
IMU + Doppler 8.33 3.71 441 8.80 3.84 4.37
IMU + CIR 7.83 3.65 4.43 8.17 3.69 4.23
IMU + Doppler + CIR (ULTRAPOSER) 7.12 3.21 3.84 7.62 3.33 3.80
T Error Reduction (%) 28.9% 32.7% 34.4% 15.1% 23.1% 21.0%
GPU. Each input sample consists of IMU, Doppler, and CIR data 0m D osm
over a 30-frame window (1 second) with no overlap. We use the n__
Adam optimizer with a learning rate of 3 x 10~ and a batch size of Full —
128. A dropout rate of 0.2 is applied to prevent overfitting. Early Body
stopping is employed with a patience of 5 epochs based on the vali- /\ \
dation loss. The training, validation, and testing datasets are split ¢
in a ratio of 7:1:2, with samples from different phone placements
combined. The total training time was approximately 8 minutes. Walk A 5?/
7.2 Evaluation Metrics ,ﬁ\
We use the IMU-only SoTA solution, i.e., IMUPoser [29], as our
baseline for comparison. We do not compare with MobilePoser [45] Upper
as its physics-based post-processing optimizer is complementary Body

across users, we conduct five-fold cross-validation, where data from
8 users is used for training and the remaining 2 users for testing
in each fold. Following prior work [14], we adopt the following
metrics to assess the quality of the model’s predictions:

e Mean Per Joint Rotation Error (MPJRE): the average angular
error across all joints in degrees (°).

e Mean Per Joint Position Error (MPJPE): the mean Euclidean
distance between the predicted and ground truth joint posi-
tions in centimeters (cm), with the root joint aligned.

e Mean Per Joint Vertex Error (MPJVE): the average Euclidean
distance error across all mesh vertices of the estimated SMPL
model in centimeters (cm), with the root joint aligned.

7.3 Micro Benchmark

This section evaluates the effectiveness of ULTRAPOSER and com-
pares it with an IMU-only solution [29] to demonstrate the supe-
riority of our system. We analyze the contribution of each input
modality, provide qualitative comparisons, and assess performance
across different body regions, motion types, and users.

Performance across Input Modalities: We evaluate the effec-
tiveness of ULTRAPOSER by comparing four input modality configu-
rations: IMU-only (i.e., the baseline IMUPoser [29]), IMU + Doppler,
IMU + CIR, and the full multi-modal input of IMU + Doppler + CIR
(i.e., ULTRAPOSER). Table 2 summarizes the performance across two
usage scenarios, i.e., “Phone in Pocket” and “Phone in Hand”.
Augmenting the IMU with either Doppler or CIR significantly re-
duces errors across all evaluation metrics. The combination of all three

Ny Va
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Figure 7: Qualitative comparison across different types of
motions and device placements. A more intense red color
indicates a higher vertex error.

modalities in ULTRAPOSER consistently yields the best performance.
This demonstrates the complementary benefits of ultrasound sens-
ing, as discussed in Sec. 3. Compared to the IMU-only baseline,
ULTRAPOSER achieves 28.9%, 32.7%, and 34.4% reductions in MPJRE,
MPJPE, and MPJVE, respectively, under the “Phone-in-Pocket” sce-
nario. For the “Phone-in-Hand” scenario, it also achieves 15.1%,
23.1%, and 21.0% reductions. On average across both scenarios, UL-
TRAPOSER reduces MPJVE by 28.46%. We also perform paired t-tests
comparing IMUPoser and UltraPoser across MPJPE, MPJRE, and
MPJVE, yielding p-values below 0.0001 and confirming statistically
significant improvements. The benefits are more pronounced for ab-
solute measurements of joint position and vertex errors due to the
improved understanding of absolute locations with the additional
information from the ultrasound sensing profile.

Qualitative Comparison with Prior Work. Fig. 7 presents a
qualitative comparison of mesh predictions generated by ULTRA-
Poser and IMUPoser across various postures and phone placements.
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(a) Comparison of arm joints error
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(b) Comparison of leg joints error (c) Comparison of different motion
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Figure 8: Comparison of MPJPE across different joints and motion types. (a) Arm joint errors during upper-body motion in the
phone-in-pocket scenario. (b) Leg joint errors during lower-body motion in the phone-in-hand scenario. ULTRAPOSER demon-
strates significant improvement for body parts without directly attached sensors. (c) Comparison of pose estimation accuracy

across various motion types. Error bars represent the 99% confidence interval.

As expected, IMUPoser exhibits the most significant errors when
the phone is held in hand during lower body motion and when
placed in the pocket during upper body motion. In both cases, the
IMU fails to capture the motion of actively moving body parts to
which it is not attached. In contrast, ultrasound sensing provides
complementary motion cues by capturing reflected acoustic sig-
nals, effectively compensating for missing IMU data and offering
valuable drift-free range measurements. Hence, ULTRAPOSER can
accurately reconstruct different body postures under different de-
vice placements. These results highlight that integrating ultrasound
sensing significantly improves full-body pose estimation accuracy,
particularly in scenarios where IMU-only methods struggle.

Performance across Body Regions: We further quantify the sig-
nificant improvements of ULTRAPOSER for body joints that are not
directly associated with IMUs. We evaluate MPJPE in two representa-
tive scenarios: (1) arm joints under the “Phone-in-Pocket” scenario
during upper-body movement, and (2) leg joints under the “Phone-
in-Hand” scenario during lower-body movement. As shown in Fig.
8 (a) and (b), ULTRAPOSER consistently outperforms the IMU-only
baseline across all evaluated joints. For arm joints errors shown
in Fig. 8 (a), ULTRAPOSER substantially reduces pose errors for the
right arm—including the hand, wrist, and elbow, where no IMU
is present, achieving a 67.28% error reduction compared to IMU-
Poser. For leg joints shown in Fig. 8 (b), even when both the phone
and smartwatch are located on the upper body, ULTRAPOSER can
still provide consistent improvements, reducing errors across all
lower-limb joints by an average of 39.92%. These results highlight
that ultrasound sensing significantly expands the spatial coverage of
motion cues without requiring additional worn devices.

Performance across Motion Types: We assess the generalizabil-
ity of our approach across different types of body motion by com-
paring the performance of ULTRAPOSER and IMUPoser on full-body,
upper-body, lower-body, and walking-specific motions separately.
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Figure 9: Comparison of MPJVE on different user groups
with 5-fold cross-validation. Error bars represent the 99%
confidence interval.

As shown in Fig. 8 (c), ULTRAPOSER consistently outperforms the
IMU-only baseline across all categories. The most notable gains
are observed in upper-body motions. This is likely because upper-
body movements are more variable and less constrained, making
them harder to estimate without ultrasound sensing. Among all
categories, walking exhibits the highest absolute error for both
models. This is because walking is a highly dynamic activity that
involves nearly all major body joints moving, making it particularly
challenging to estimate accurately. Despite this, ULTRAPOSER still
maintains a performance advantage over IMUPoser, confirming its
robustness for complex motions.
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Figure 10: Different environments for training and testing,.

Performance across Users: We conduct a five-fold cross-validation
study to evaluate generalization across different users, as discussed
in Sec. 7.2. This setting poses a greater challenge than within-user
evaluation, as different users naturally exhibit variations in motion
style, scale, speed, and joint coordination, even while performing
the same actions. As shown in Fig. 9, although the absolute MPJVE
increases for the cross-user setting, ULTRAPOSER outperforms IMU-
Poser across all user groups. On average, ULTRAPOSER achieves
a 19.61% reduction in MPJVE compared to IMUPoser. Regarding
MPJRE and MPJPE, IMUPoser achieves 26.78° MPJRE and 10.60 cm
MPJPE, while UltraPoser achieves 21.55° MPJRE and 8.64 cm MPJPE,
demonstrating consistent improvements across all metrics. Further-
more, cross-user paired t-tests conducted between IMUPoser and
UltraPoser for MPJPE, MPJRE, and MPJVE vyield p-values under
0.0001. These results highlight the potential of ultrasound sensing in
generalizing across different body shapes and motion patterns. As
part of future work, we plan to investigate user-adaptive modeling
techniques and leverage simulated ultrasound data to better capture
inter-user variability and further improve cross-user generalization.

Table 3: Comparison in unseen environments.

System MPJRE (°)  MPJPE MPJVE
(cm) (cm)
IMUPoser 18.94 8.38 10.49
UltraPoser 16.41 7.19 8.69
Error Reduction (%) 13.4% 14.2% 17.2%

Environmental Sensitivity and Robustness: Different environ-
ments may have different furniture and layouts, which in turn affect
ultrasound propagation and the resulting multipath patterns. To
evaluate ULTRAPOSER ’s robustness and its ability to generalize to
new environments, we train and validate our model using 8 users’
data collected in two laboratory settings, then test it on 2 users’ data
from an unseen laboratory with a different size, layout, furnishings,
and surroundings. Fig. 10 shows one of the training environments
with 7 users’ data and the testing environment.

As shown in Table 3, compared to IMUPoser, which is purely
based on IMU and not affected by environmental variations, ULTRA-
PoskRr still consistently demonstrates improved performance across
all metrics in unseen environments. As shown in Fig. 4 (a), the
effective device-free sensing range of our system is approximately
1 meter. When the objects are beyond this range, ULTRAPOSER will
be largely unaffected. While extremely close objects may intro-
duce variations in the measurements, such situations are relatively
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uncommon in applications like motion tracking for AR/VR interac-
tions. Future research could also investigate methods to mitigate the
impact of nearby moving objects, which may cause more significant
distortions in the ultrasound spectrum. One promising direction is
to leverage the co-located IMU sensors to distinguish user-induced
motion from environmental interference, thereby enhancing system
robustness.

Table 4: Ablation study on each network module. Both pro-
posed modules contribute to system performance, with the
graph-based physics-aware module providing the most sig-
nificant improvement.

Module MPJRE MPJPE MPJVE MPJVE
©) (cm) (cm) Rise

wo/ Cross-Modal 7.60 3.45 4.04 5.76%

Attention

wo/ Graph-based 9.34 418 489  28.01%

Optimization

w/ both Modules 7.37 3.27 3.82 -

Table 5: Ablation study on each device. All three devices
contribute to the overall system performance, with the phone
having the greatest impact, followed by the watch and then
the earbud.

Device MPJRE  MPJPE  MPJVE
) (cm) (cm)
wo/ earbud 7.86 3.47 4.07
wo/ watch 9.21 4.20 5.03
wo/ phone 14.43 5.71 6.90
w/ all devices 7.37 3.27 3.82

7.4 Ablation Study

This section presents an ablation study to evaluate the impact of
each module design in our multimodal pose estimation network. We
also analyze the contribution of each device to the overall system
performance.

Contribution of each Module: We conduct an ablation study
to evaluate the contributions of ULTRAPOSER’s key components:
the cross-modal attention mechanism and the graph-based opti-
mization module. First, we replace the cross-attention module with
element-wise multiplication to evaluate the impact of explicit cross-
modal interaction. Next, we remove the graph-based pose refine-
ment and instead use an MLP-based pose estimator as used in prior
work [29] to directly predict the final pose. Table 4 reports the model
performance when each component is individually removed. Re-
moving the cross-modal attention leads to moderate performance
degradation across all metrics, increasing MPJRE and MPJPE to
7.60° and 3.45 cm, respectively, and causing a 5.76% increase in
MPJVE. This indicates that leveraging the correlations between
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different sensing modalities helps refine temporal dynamics and
spatial coherence.

In contrast, removing the graph-based physics-aware optimiza-
tion results in more substantial performance drops, with MPJRE
rising to 9.34°, MPJPE to 4.18 cm, and MPJVE to 4.89 cm, correspond-
ing to a 28.01% increase in MPJVE. This shows the effectiveness of
body-structure-aware reasoning in improving global consistency.
The full model with both modules achieves the best performance
across all metrics, confirming the complementary strengths of cross-
modal fusion and graph-based physics-aware pose estimation.

Contribution of each Device: We assess the individual contri-
bution of each device in our system and perform ablation experi-
ments by selectively removing one device’s data at a time—earbuds,
watch, or phone—while retaining the data from the remaining two.
When a device’s data is removed, we adjust the network architec-
ture accordingly to accommodate the modified input. As shown in
Table 5, all three devices contribute to overall pose estimation per-
formance. We observe that removing the phone leads to the most
severe performance degradation across all metrics, likely due to its
superior ultrasound sensing capability that provides richer motion
and range information. The watch also plays an important role,
and its removal causes a moderate performance decline. In contrast,
removing the earbud leads to the smallest degradation, reflecting
its more limited spatial coverage despite its contribution to head
motion. Given that acoustic signals provide much of the benefits
in ULTRAPOSER and the earbuds are unable to measure or transmit
these signals (Sec. 8), the least reduction in accuracy after remov-
ing them is not surprising. Besides, these results demonstrate that
ULTRAPOSER can still function effectively in reduced-device con-
figurations, which is important for real-world applications where
users may not consistently carry all three devices.

8 Limitations and Discussions

While ULTRAPOSER demonstrates the feasibility of combining com-
modity IMUs and ultrasound sensing for full-body pose estimation,
there remain several design trade-offs and practical limitations.

Hardware Limitations: Today’s commodity hardware limitations
rein ULTRAPOSER’s ability to make an even larger impact on pose
estimation. First, most commercial earbuds reduce sampling for
energy efficiency, making them unable to transmit and receive
ultrasound signals. This prevents their integration into the acoustic
sensing pipeline. However, recent advances in hearables [19] have
the potential to change this limitation very soon. Second, the phone-
to-watch acoustic link is excluded due to the limited receiving
ability of the smartwatch’s microphone, which limits ULTRAPOSER’s
ability to leverage two-way Doppler for robustness.

Device Placement: While ULTRAPOSER can achieve vertical spatial
diversity by leveraging additional ultrasound features, our imple-
mentation requires users to wear the smartwatch and phone on
opposite sides of the body laterally. However, in practice, users
may wear devices differently—both on the same side, in a jacket
pocket, or even in a backpack. Such variations can lead to overlap-
ping sensing regions or degraded signal quality. Future iterations of
ULTRAPOSER could explore adaptive calibration strategies or device-
aware modeling to support more flexible, user-specific placement
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scenarios. Additionally, to address the challenge of changes in de-
vice position or orientation during user movement, future work
could explore auto-recalibration techniques that estimate the de-
vice’s orientation using IMU data.

Our current implementation uses an attachable pocket clip to
secure the phone near the user’s trouser pocket to mitigate friction-
induced acoustic noise. This noise arises from random, rapid vibra-
tions between clothing and devices. While such friction primarily
generates low-frequency components, it can also produce sharp, im-
pulsive events with broadband spectral content that extends into the
ultrasound band, causing interference with signal measurements.
To address this issue, future work could explore solutions such as
advanced filtering techniques or machine learning-based denoising
to minimize contact-induced noise and ensure more robust system
performance.

Operability in the Real World: ULTRAPOSER operates in the
17-22 kHz frequency range. While the majority of this range (18-22
kHz) is generally inaudible to users, some individuals and ani-
mals—particularly when close to the speaker—may still perceive
faint high-frequency sounds. This is primarily due to the lower
end of the band (17-18 kHz) approaching the upper limit of hu-
man and animal hearing. This limitation stems from the restricted
high-frequency performance of typical commodity speakers. As
wearable audio hardware continues to improve, future systems may
be able to operate at higher, fully inaudible frequencies with better
SNR. Further, decreasing the bandwidth for less auditory overlap
with human and animal auditory range only reduces the benefit
provided by CIR. ULTRAPOSER will still beat the state-of-the-art
solutions on all metrics despite a reduced bandwidth.

Power Consumption: Another practical consideration is the in-
creased energy consumption of the audio system, which may impact
battery life in longer sessions. Our current implementation keeps
the audio stream active throughout the sensing process to ensure
robustness. However, future adaptive sensor fusion strategies can
selectively activate it to balance accuracy and energy efficiency,
such as activating the ultrasound module only when motion is
detected or improved accuracy is necessary.

Privacy of the Sensed Pose: A good side of our proposed solution
is that it can run on a phone, keeping the data secure and private
on the phone. The size of the model is roughly 61 MB, which does
not take significant storage resources to store on a phone and can
allow modern devices to store all the detected poses locally. In fact,
ULTRAPOSER can generate pose embeddings that obfuscate all the
other acoustic information and present only a human mesh for re-
habilitation and high-endurance training applications maintaining
the privacy of the user.

Application-relevant benefits of ULTRAPOSER: (1) Rehabilitation
requires an accurate understanding of the joint rotation and how
much the affected limb or part of the body was raised. In some sce-
narios, this can enable effective intervention via doctors prescribing
new exercises. Further, accurate pose estimation will make future
Al-based rehabilitation systems even more robust. (2) Posture de-
tection is a critical problem in early-middle-aged humans where a
bad posture can lead to severe problems in the lower back. Using
ubiquitous sensing solutions, like ULTRAPOSER, has the potential
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to periodically warn users about these issues early and provide an
improvement plan. (3) Adaptive gesture-based interfaces in applica-
tions such as AR/XR, smart fabrics, or even hardware-augmented
gestures can leverage the pose as an additional input market to
develop richer gestures for interaction using ULTRAPOSER.

9 Conclusion and Future Work

This paper presents ULTRAPOSER , the first system that integrates
ultrasound sensing and IMUs for full-body pose estimation using
off-the-shelf wearable devices. Our motivation study demonstrates
that ultrasound sensing can enhance IMU-only solutions by captur-
ing complementary motion features and providing multipath range
profiles that compensate for IMU drift. To implement ULTRAPOSER,
we conduct systematical benchmark studies to design an optimal ul-
trasound profile that maximizes sensing quality. We further develop
a graph-based, physics-aware multi-modal pose estimation frame-
work that fuses the spatial complementarity of different wearable
devices and sensing modalities. Extensive evaluations show that
ULTRAPOSER effectively overcomes the performance bottlenecks
of existing IMU-based methods and achieves significant improve-
ments, particularly for joint motions that IMUs alone fail to capture.
While this work targets a specific device setup and application, it
holds promise for future extensions to more general, distributed
ultrasound or multimodal sensing systems built on commercial
hardware.

We believe that ULTRAPOSER’s advancement of practical and low-
cost pose tracking using commodity devices has the potential to
enable applications in rehabilitation and sports training by reducing
costs in daily life. Furthermore, other interactive applications, such
as gesture-based smart device control, immersive interaction in
XR environments, and motion capture for media development, can
adopt ULTRAPOSER as a foundational component to complement
and enhance existing solutions.
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